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a 

Abstract 

Successive treatment of triallylamine with zirconocene chloride hydride and germanium tetrachloride affords 1-aza-5-germa-5-chloro- 
bicyclo[3.3.3]undecane, which is converted to the 5-organo derivatives by the reaction with Grignard or lithium reagents. The organo 
groups showed higher reactivities toward Stille-type coupling than the corresponding organotributylgermanes. 
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Organostannane is one of the useful synthetic reagents 
for carbon-carbon bond formation. Transition-metal- 
catalyzed cross-coupling reaction of organostannane 
with organic halides or triflates is now widely utilized 
[1]. As for the organosilicon compounds, fluoride-ion- 
mediated palladium-catalyzed reactions have been re- 
cently developed [2]. Relatively few papers, however, 
have appeared for the palladium-catalyzed reactions of 
organogermanes [3]. To our knowledge, only the cross- 
coupling reaction of trimethylvinylgermane with aryl 
tetrafluoroborate is known [4]. From the observation of 
the silicon chemistry, the usual tetracoordinated 
organogermanium species are considered to be less 
reactive in the presence of a palladium catalyst. There- 
fore we intended to prepare 1-aza-5-germa-5-organobi- 
cyclo[3.3.3]undecane, expecting that reactivity of the 
organo group is enhanced by the transannular coordina- 
tion of nitrogen to germanium. We now report the 
preparation of 1-aza-5-germa-5-organobicyclo- 
[3.3.3]undecane and the palladium-catalyzed reaction 
with aryl bromides. As the transmetalation of zirconium 
to germanium is known [5], we used a similar method to 
synthesize the corresponding tin compound reported by 
Vedejs et al. [6]. 
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Thus hydrozirconation of triallylamine, followed by 
the transmetalation with germanium tetrachloride gave a 
novel 1-aza-5-germa-5-chlorobicyclo[3.3.3]undecane 
with 89% yield [7]. By the reaction with the correspond- 
ing Grignard or lithium reagents, it could be converted 
into the corresponding 5-organo compounds (yields; 
butyl, 74%; allyl, 82%; phenyl, 97%; vinyl, 98%; 1- 
ethoxyvinyl, 86%; phenylethynyl, 11%) [8]. 

First of all, the corresponding tributylgermanes were 
prepared and their palladium-catalyzed reaction with 
p-bromotoluene was investigated as a comparison with 
the reaction of the bicyclo germanium compounds. Most 
of the reactions did not give the cross-coupling products 
at all, except for the reaction of tributylvinylgermane, 
which afforded p-methylstyrene with 60% yield. The 
result can be explained from a similar palladium-cafa- 
lyzed reaction of trimethylvinylsilane with aryl iodide 
[9]. 

Palladium-catalyzed reaction of 1-aza-5-germa-5- 
organobicyclo[3.3.3]undecanes thus prepared with aryl 
bromide was carried out as follows: a mixture of the 
germane (1 mmol) and the halide (1 mmol) in the 
presence of tris(dibenzylideneacetone)dipalladium chlo- 
roform (0.01 mmol) plus the phosphine (0.04 mmol) 
and tetrahydrofuran (1 ml) was sealed in vacuo in a 
glass ampoule and was heated in a thermobath at 120°C 
for 24 h. The product was analyzed by gas-liquid 
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Table 1 
Pd-catalyzed reaction of the bicyclogermane with p-bromotoluene 

Entry 

C ~ ~  + - - ~ B r  

R 
1 eq 1 eq 

R 

Pd2(dba) yCHCI31 mol% 
Ligand 4m01% 

120°C 24h TI-IF lml 

Ligand GLCyield a 
(%) 

1 Butyl 
2 Allyl b 
3 Phenyl 
4 Vinyl 
5 1-Ethoxyvinyl ¢ 
6 Phenylethynyl 

PPh(o-tol) 2 8 
PPh 3 88 (77) 
P(o-tol) 3 95 (85) 
P(o-tol) 3 82 
PPh(o-tol) 2 59 
PPh(o-tol) 2 67 

a Isolated yield given in parentheses 
b Bromobenzene was used as the aryl halide. 
c The product was p-methylacetophenone. 

chromatography (GLC) with n-dodecane as an internal 
standard. The product was isolated by silica gel chro- 
matography, after aqueous work-up of  the reaction mix- 
ture, followed by extraction with ether and dried over 
sodium sulfate. The results are shown in Table 1. As 
expected, cross-coupling products were obtained with 
moderate to good yield except for the butylation. It is 
interesting to note that generally the phosphine having 
the o-tolyl group gave products with a good yield. 
However, the allylation was the only exception, i.e. the 
use of triphenylphosphine gave a superior yield to that 
of tri(o-tolyl)phosphine. At present the reason for this is 
not known. Use of tri(2-furyl)phosphine or triphenylar- 
sine, which are good ligands of palladium for the 
Stille-type coupling, [10] showed similar results when 
used triphenylphosphine. 

Thus, we synthesized 1-aza-5-germa-5-0rgano- 
bucyclo[3.3.3]undecanes. In these compounds, a signifi- 
cant enhancement of reactivities of  the organo groups 
toward Stille-type coupling was observed, in compari- 

LAFI 
CP2ZrCI2 

Cp2ZrHC1 
triallylamine 

in THF 
0°C 

C1 

GeC14 / - -  N "~\~')" 

in hexane ( ~ G e  

C1 

N "~\~ R-MgBr or J- U 

R-Li X__Ge 

R 

R ffi butyl, allyi, phenyl, vinyl, 1-ethoxyvinyl, phenylethynyl 

son with that of the corresponding organotributylger- 
manes, presumably owing to the transannular coordina- 
tion of nitrogen to germanium, although the reactivity 
was not as great as that of the corresponding tributyltin 
compounds. Further work is in progress. 
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